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ABSTRACT

NUMERICAL INVESTIGATION OF GAS-PARTICLE
SUPERSONIC FLOW

SEPTEMBER 2011

MIHIR A. SAMEL
B.E., UNIVERSITY OF MUMBAI
M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David P. Schmidt

Particles lying in the sub-micron range have widespread applications in the phar-
maceutical, ceramic and other related industries. Separation and classification of
these particles is a very important step involved in the manufacturing of these prod-
ucts. Inertial separation, which involves forcing a rapid change in direction of flow of
a particle laden gas flow, such that the solid particles separate from the gas stream-
lines due to their inertia, is the most commonly applied separation technique used
for industrial applications. This rapid change in direction of the fluid can be forced
by rapidly accelerating the mixture to high velocity and low pressure using a sonic
nozzle, causing disequilibrium between the phases. This separation property of super-
sonic jets, called ‘aerodynamic separation’, has been widely used in molecular beam
formation and mass spectrometry, techniques for analyzing properties of a substance.
These processes isolate a narrow beam of molecules, ions, and heavy isotopes along
the centerline axis, so that the beam can be introduced in a testing chamber for their

analysis.

vi
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Using Computational Fluid Dynamics (CFD), I have demonstrated how super-
sonic free jets can be applied for the large scale isolation and separation of sub-micron
solid particles. Optimum separation for particles of a particular diameter can be ob-
tained, in the form of a very narrow distribution along the centerline axis. This
separation regime is represented by the optimum value of the dimensionless param-
eter called as the Stokes number (S;), which predicts the probability of particles to
separate from the gas phase after encountering an obstacle in the flow. Straight noz-
zles or capillaries which provide maximum acceleration at its inlet have been found
to be best suited for such applications. The acceleration experienced by the gas-
particle mixture due to the sudden change in area of the nozzle, is the primary factor

responsible for the separation of the path of both phases.
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CHAPTER 1
INTRODUCTION

1.1 Background and motivation

Particles lying in the sub-micron range have widespread applications in the phar-
maceutical, ceramic and other related industries. They also have increasing applica-
tion in processes such as ‘Gas dynamic cold spray process’ [13,35], for the production
of thin metallic films. Inertial separation is used to separate solid particles or droplets
from a gas stream by enforcing a change in the velocity and direction of the gas. The
particles, due to their inertia, find themselves unable to follow this change in direction
and hence separate out of the gas flow. Cyclone separators have been one of the most
popular categories of inertial separators on account of their simplicity in design and
construction and high collection efficiency. In a typical cyclone separator the gas-solid
flow in injected into a cylindrical separator chamber in a direction tangential to its
circumference. This results in a vortex flow about the axis. The particles, on account
of their inertia, are hurled onto the walls of the chamber. On losing their momentum
because of the impact with the walls, the particles fall to the bottom of the chamber
where they are collected. In spite of the wide application of cyclone separation in
dust removal processes, it is difficult to obtain satisfactory collection efficiency for
sub-micron particles.

Impact separators force the change in direction of the fluid by imposing an obstacle
in its path. Common obstacles can come in many shapes. This obstacle causes causes
a disequilibrium between the two phases, causing the particles to diverge from the gas

after impacting the surface. Frain (2000) [17] designed a conical array of concentrically
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arranged circular rings which obtained collection efficiency in the range of 80-85% for
a particle size of 10 um.

The separation of a particle is defined by the non-dimensional parameter called
the Stokes number (S;), which is the ratio of two time scales, 7, and 7. The 7, or the
particle dynamics time scale is the time required by the particle suspended in a gas,
to respond to the change in velocity of the gas, after experiencing an acceleration due
to the obstacle. The 7, or the gas dynamics time scale is the time taken by the gas to
travel around the obstacle. Micron and sub-micron sized particles have low inertia,
and hence a smaller value of 7, and S;. This severely affects their seperation at normal
operating conditions. A review of particle dynamics in Chapter 3 shows that the value
of 7, and S; can be increased by reducing the drag forces acting on the particles.
This reduction can be achieved by operating the device at sub-atmospheric pressures.
Witman (2005) [49] demonstrated this principle for particle sizes of 1 —10um at sub-
atmospheric pressures, using a louver separator with rectangular cross-section for the
blades. A collection efficiency of 85% was obtained for 1um particles at a pressure of
0.76 torr (101 Pa.), demonstrating its potential for its application in industry.

The particle laden flow maintained at reservoir pressure conditions is introduced
into the low pressure chamber through a nozzle. As the flow exits the nozzle it ex-
periences a strong pressure gradient. Such conditions result in the formation of an
under-expanded supersonic free jet. This jet is characterized by a rapid expansion of
the air to operating pressure, followed by formation of shocks, such as a Barrel shock
and a Mach disc. Witman’s experiments were focused on the fluid and particle dy-
namics occuring downstream around the louver blades. However, the under-expanded
jet has the potential of separating particles as they exit the nozzle, according to their
diameter size.

The application of under-expanded jets is prevelant in particle analyzer systems.

Both system use the properties of the jet to isolate and focus aerosol particles,
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molecules or heavy isotopes along the centerline of the nozzle. In these processes, the
lighter specie or the carrier gas expands as it exits the nozzle. The heavier species,
representing the particles to be analyzed, however due to their relatively higher value
of 7, continue to travel in a straight trajectory. The nozzle geometry is known to have
influence on the degree of concentration of the heavy molecules around the centerline.

The size of the molecules and the ions separated in the particle analyser systems
is extremely small compared to the molecules. Here, the significance of the Stokes
number (S;) is important. The value of the S; defines the effects of fluid dynamics
and the geometry of the devices on the separation of the particle and gas phases.

Therefore, an optimum value of S; shall be used to match separation performace in

different conditions.
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CHAPTER 2
LITERATURE REVIEW

2.1 Inertial impact particle separation

One of the earliest studies on a louver-array based inertial impact separator was
conducted by Poulton and Cole (1981) [38]. The designers based the mechanism of
the separation on the inertia of the solid particles suspended in the gas flow. The
blade array was designed in a way that 90% of the incoming air was diverted through
the blade spacing as ‘clean air’, while the remaining 10% with the particles continues
in the original direction. The experimental results were backed up by numerical
simulation of the particle trajectory using the Runge-Kutta-Merson method. The
drag law acting on the particles was adopted as the one suggested by Serafini (1954)
[41].

Poulton and Cole measured the performance of their device in terms of ‘mass
efficiency’ of collection, i.e. simply by the ratio of the mass of the particles separated
to the total inlet mass. Further, the variation of the collection efficiency was plotted
against operating parameters such as the inlet air velocity and the design parameters
such as blade thickness, pitch, and array angle. Since the designers were relying on
the inertia of the particles for separation, they did not focus on the influence of the
particle dynamics on collection efficiency. For example, no attention was given to
study the effect operating pressure can have on the particle drag and how that can
affect collection. Nevertheless, this study did successfully establish the effectiveness
of louver-based separation for turbine engine applications, where the presence of solid

particles suspended in the gas can cause heavy damage to the turbine blade surface.
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Moreover, careful consideration to design parameters can cause minimum pressure
loss across the array and hence improve the power consumption.

Musgrove et al (2009) [31] performed a computational study of a louver-based
separator for application in a jet engine, in order to prevent erosion of the turbine
region by solid particles in the gas. Their separator used a ‘collector bin’ located
downstream of the louver array for particle collection. The working gas was modeled
as an ideal incompressible gas, with light particle loading having no effect on the gas
phase. The particle drag forces were modeled by the Haider and Levenspeil (1989) [19]
drag law which expressed C; in terms of certain empirical functions. These functions
are polynomials of the shape factor ¢, which is a measure of the sphericity, with ¢ = 1
denoting a perfect sphere. This study recorded the collection efficiency for a range
of particle diameters from 1 to 50 pm. The efficiency for different particle sizes was
calculated by varying the shape factor ¢. Perfectly spherical particles having ¢ = 1
displayed the best collection efficiency, with a decreasing trend for lower values for
¢ (Figure 2.1). However the influence of ¢ on the particle collection efficiency was
much less pronounced for particle diameter larger than 10 pum. This was attributed

to the fact that for larger particles, inertia dominated the drag forces.
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Figure 2.1. Effect of shape factor on collection efficiency, Musgrove et al [31]

Frain (2000) [17] used a conical array of concentrically arranged circular rings as
the impact surface. Using the device, Frain obtained collection efficiency in the range
of 80-85% for particle size of 10um. However, the efficiency dropped for particles
below 10um as these particles have a lower inertia to drag ratio due to their lower
mass. Witman (2005) [49] used this mechanism for separating particles having sizes
ranging from 1 — 10um at sub-atmospheric pressures using a louver separator with
rectangular configuration for the blades. A collection efficiency of 85 % was obtained
for 1um particles at a pressure of 0.76 torr &~ 101 Pa demonstrating its potential for
its application in industry.

In 1990, Fernandez de la Mora et al. [12], designed a hypersonic plate impactor
for separation and collection of nano-sized particles. In a plate impact separator, a
plate is placed close to the nozzle outlet in a direction normal to the flow. Operation
of the process at normal pressures limits the value of the particle dynamics time
scale( 7, ), because of the low inertia of the particles. Supersonic and hypersonic jets

ow pressure which considerably reduce the drag forces on the
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particles, thus producing a higher value of S;. This enables the particles to achieve
separation from the gas and collect on the plate. The nozzles used to expand the
gas mixture had diameters in the range of 0.1 to 0.5 mm. The collection of the
device was measured as a function of the nozzle geometry, operating conditions, and
distance between the plate and the nozzle exit. The significance of these parameters
was expressed through the Stokes number of the system, both in the impact region
and near the nozzle exit. Successful collection efficiency was obtained for particles
around 5 nm size. The collection efficiency results obtained experimentally have been
used to validate the numerical solver. A detailed explanation of the validation has
been offered in Chapter 5.

In (2004), Abouali and Ahmedi [1] performed computational investigation of a
hypersonic ‘plate impact separator’ by Fernandez de la Mora et al [12]. Abouali
and Ahmedi simulated the gas phase using the FLUENT compressible viscous flow
solver [16]. Particle trajectories were calculated by the Stokes drag law with the
Cunningham correction factor for the nano-sized particles. The mean free path (\)
of the particles was expressed in the Cunningham correction factor [11] (Equation
2.3) as a variable quantity to account for the significant variations of the values of

pressure in the flow field:
~0.03177

p

A (2.1)

The collection efficiency predicted by FLUENT agreed well with the experimental
findings by Fernandez de la Mora et al [12], though the nozzle geometry was not
included in the computational model.

The operation of particle separation methods in supersonic, rarefied conditions
motivates us to take a look at how the supersonic gas flow itself can be used to separate
particles based on their size. Prominent amongst these methods are molecular beam

method and mass spectrometry. In these methods, molecules or heavy ions of a

www.manaraa.com



given size are focused narrowly along an axis and passed into a chamber where their

properties may be analyzed.

2.2 Particle focusing

The under-expanded jet is predominantly used by particle analyzer systems to
separate and isolate molecules, ions of substances for analyzing their physical and
chemical properties. Molecular beam method and mass spectrometry are the most
prominent methods that make use of the under-expanded jet evolved due to rapid
expansion of a carrier gas emerging from a sonic jet. The molecular beam method
is used to isolate a stream of molecules of the carrier gas along the centerline of
the nozzle, while mass spectrometry is used for the isolation of ions suspended in
a lighter carrier gas. However, the principle of operation remains the same in both
methods. In order to understand the application of the jet in separation of much
heavier solid particles, it is necessary to conduct a brief review of both methods.
Fenn [14] published an article in 2000, describing the history of the evolution of
both the methods. Figure 2.2 shows the schematic representation of molecular beam
methods. In the classical molecular beam method (Figure 2.2(a)), the gas effuses
from source through a orifice into the collimating chamber. The beam of molecules,
aligned close to the axis is generated in the collimating chamber and passed to the test
chamber through a hole or a channel placed co-axially, called the ‘skimmer’. However,
the effusive method suffers limitations in the form of reduced beam intensity due to
scattering of the molecules.

Kantrowitz and Grey [23], demonstrated that the under-expanded free jet, re-
sulted by the expansion of a gas stored at a higher pressure reservior to an extremely
low pressure region through a converging-diverging nozzle, can be used for generating
molecular beams. The molecules in the beams have a very narrow velocity distribu-

tion. The pressure maintained in the low pressure expansion chamber is generally on
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Figure 2.2. Molecular beam apparatus using (a) effusive source and (b)supersonic
nozzle, Fenn [14]

the order of 100 — 400Pa. The authors used a converging-diverging nozzle in order
to obtain gas streamlines parallel to the centerline, thereby increasing the intensity
of the beams. However, boundary layer effects, due to viscous flow interaction with
the nozzle walls in the diverging section were observed to have a negative impact on
the beam intensity. The influence of this effect was considered in the design of the
nozzle geometry. Figure 2.2(b) shows a typical molecular beam apparatus using the
under-expanded jet.

Becker and Bier [6] also observed the negative influence of the boundary layer
effects in the diverging section of the nozzle. Moreover, they proved that removing the
diverging section completely eliminated these effects and produced beam intensities
much higher than the ones obtained with the diverging section. Later, Ashkenas and
Sherman (1965) [4], observed that for short nozzles, without a diverging section, the

viscous effects do not affect the core of the nozzle flow. They remain concentrated
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in a thin boundary layer near the nozzle walls. Therefore, nozzles without diverging
section (capillaries or purely converging nozzles) have been predominantly used in
molecular beam formation. They are also easier to design and fabricate.

Later, Becker et al. [7] observed the property of the under-expanded jet to separate
heavier species suspended in the lighter carrier gas. Becker and his team observed that
when the carrier gas, contaminated with a small amount of the heavier specie, was
expanded in the form of the supersonic jet, the carrier gas streamlines diverged from
the centerline in a radial direction, after exiting the nozzle. However, the heavier of
the species remained close to the centerline on account of their higher inertia. Hence,
the specimen of the mixture, that was collected by the skimmer was enriched in the
heavier of the two species. Moreover, it was observed that the skimmer, which is
used to collect the separated molecular beams, enriches the beam even further, by
deflecting the lighter carrier gas away. They later used this mechanism to separate
heavier uranium isotopes [5]. Reis and Fenn [39] repeated such experiments to obtain
hydrogen-nitrogen mixtures by using under-expanded jets as the beam sources. It
was observed that the flow entering the sampling probe placed axially in the path of
the jet, was enriched in the heavier species. The inertial effects at the inlet of the
probe caused the species to be concentrated in the probe, while the lighter carrier
medium deflected away.

The ability of a supersonic under-expanded jet to isolate heavy molecules and
isotopes from a lighter carrier gas is thereby fairly known. The average size of the
molecules of most elements is of an order much smaller than 1 pm, which is the
desired size of this thesis. This difference in scale of the particle dimensions should
be accounted for, while designing separation mechanisms for solid particles belonging
to the micron range. The influence of the nozzle geometry on the flow of the gas also
needs to be studied. The preceding section describes that nozzles without a diverging

section to be best suited for aerodynamics separation. Hence, the attention of the

10
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thesis will be focused on nozzle with a converging and straight section only. The
above mentioned factors, viz. nozzle geometry and the operating conditions can be
represented by a single dimensionless parameter called the Stokes number (S;) which
measures the probability of a particle to separate from the gas streamlines, after
experience an acceleration due to an obstacle in its path. If the value of S; < 1, the
particles remain coupled to the gas streamlines after encountering the obstacle. For

a value of S; > 1, the particles separate from the gas streamlines. The S; is given as:

= M (2.2)
18uL
where p, and d, are the particle density and diameter respectively. Here, L is
the characteristic length scale in the flow, which can be represented by the nozzle
diameter.
As the particles exit the nozzle into the extremely low pressure region, they expe-

rience the effects of rarefaction in form of reduction of the drag force acting on them.

These effects are represented by the Cunningham correction factor (C,), given as:

2T 11t
C, = [1 + % (1.257 +0.4e 1'1<2A<w>>)] (2.3)
P
where \(T, p) is the molecular mean free path of the particles, the distance trav-
elled by the particle between two successive collisions. The ratio K,, = %, called

P

as the dimensionless parameter Knudsen number, is the ratio of the molecular mean
free path to a characteristic length scale of the flow (particle diameter, d, in this
case). The magnitude of K, signifies the regime of the flow. For sub-micron sized
particles in rarefied pressure, the value of the K, is greater than unity. This means
that particles no longer move as continuum in the gas flow, but as discrete molecules
amongst the gas molecules, reducing the magnitude of the drag force. The expression
of the Cunningham correction factor is therefore used to obtain the computational

solution of the particle trajectories.

11
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The following sections contain a review of the characteristics of the nozzle flow, the
under-expanded jet and the numerical methods to simulate the same. A brief review
of inertial separation methods has been presented for the complete understanding of
the principle. Further, the equations of the particle dynamics have been explained in

detail in the following chapter.

2.3 Supersonic compressible flow
2.3.1 Flow in converging nozzles

The compressible flow in a converging nozzle (C-D) has been studied in detail by
many authors such as Shapiro (1953) [42] and Anderson (1990) [3]. The properties of
the gas across the length of the nozzle can be expressed in terms of their corresponding
stagnation values and the area ratio at any point, assuming an isentropic flow. Figure
2.3 describes the isentropic flow through a C-D nozzle. The gas enters the inlet from
the reservoir maintained at stagnation conditions represented by the suffix ‘0’. The
gas reaches sonic conditions at the throat i.e. the section with minimum area. It
expands isentropically to supersonic conditions in the diverging section of the nozzle.
It subsequently forms an under-expanded jet as it exits the diverging section.

The Mach number of the flow can be calculated at any point across the length of

the nozzle from the area of cross-section at that point and at the throat area.

y+1
A 1 2 y—1_ ,\]¥2
v |(5) () =

The density, pressure and temperature of the gas can in turn be calculated from

the local Mach number (M):

_1

— 1 ~v—1
% - [1 + VTMQ} (2.5)

12
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These equations are valid for a purely converging nozzle where sonic conditions
are reached at the outlet (minimum cross-section area) of the nozzle. It must be
noted however, that for sonic conditions to be reached at the outlet, the values of the
outlet pressure, Py, must be below a value represented by the “critical conditions”.
These conditions represented by the suffix ‘*’ can be obtained by substituting M = 1

in Equations 2.5 to 2.7.
* 2 ~—1
P_ <—) = 0.6399 (2.8)
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P* 2 71
— = — = (0.5283
B, <’7 + 1>

T*_< 2
T()_ ’}/+1

2.3.2 Flow in constant area nozzles

) = 0.8333

i

Unlike converging nozzles, the compressible fluid flow through constant area noz-

zles cannot be governed by the change in the cross sectional area as given in Equation

2.4. The flow is driven by the pressure gradient applied across the length of the noz-

zle. The change in fluid properties is brought about by the friction of the gas with

the nozzle walls [42]. This flow can be approximated as the “Fanno Flow”. According

to this approximation, if the flow at a point in the nozzle is subsonic, the effect of

friction is to increase the velocity and hence decrease in pressure and density of the

flow. However, if the flow is supersonic, the friction has the opposite effect on the

velocity. Hence, the flow through the nozzle always tends towards M = 1.
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2.3.3 Free under-expanded jet

The particle laden air flow is introduced into the separator chamber from a plenum
chamber maintained at total pressure (P,) through a sonic nozzle. The exit of a
supersonic jet from the sonic nozzle at a pressure different from that of the external
medium results in the appearance of the phenomena of Mach disc and barrel shock.
When the pressure of the jet at exit (F,) is higher than that of the ambient back
pressure (F,), the resulting jet is termed as an “under-expanded” jet. Figure 2.4
shows the structure of such a jet emerging from a converging nozzle. The flow of the
gas attains M = 1 at the exit of the nozzle indicating choked flow. The gas at pressure
P, expands rapidly through an expansion fan, to reach P,. As the expansion waves
intercept the jet boundary, they are converted to compression waves and are deflected
towards the centerline. These compression waves coalesce to form the barrel shock.
Further downstream, the flow is turned parallel to the direction of the centerline
through the normal shock, Mach disc. The core of the jet bounded by the barrel
shock and the Mach disc is a region of very low pressure and high Mach number and
is termed as the “zone of silence”. This is the region from which molecular beams are

extracted through the skimmer [14,36,40] .
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Figure 2.4. Schematic representation of the supersonic under-expanded free jet,
Fenn [14]

Experimental investigation of under-expanded free jets by Crist et al (1966) [10]
provided empirical expressions that expressed the Mach disc location (L,,4) and its
diameter (D,q), both non-dimensionalized, as a function of the stagnation pressure

to ambient pressure ratio (PR = %) (Figure 2.5).

Dina 56, /(Lo _ 39 (2.11)
oo =0 5o .
Lmd Po

= 0.65,/( =2 2.12
0 (57) 2.12)

Addy (1981) [2] performed an experimental investigation of under-expanded free-

jet flows using nozzles of different geometries, with the objective of validating Crist’s
expressions. Experiments were conducted on one contour converging nozzle, four con-
ically converging and a sharp-edged orifice ( Figure 2.6). The diameter and location
of the Mach discs were determined using 10 pus shadowgraph images. Experiments

on each nozzle were conducted by varying the PR within the range of 1 < PR < 10.
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Figure 2.5. Mach Disc diameter and location for under-expanded free-jet flows Addy
(1981) [2]

These experiments helped establish a plot for the onset of the Mach disc with respect
to the PR for nozzles with geometries described in (Figure 2.6).

Further observations established that Crist’s expressions are valid in the prediction
of the location and diameter of the Mach discs for under-expanded free jet flows for
all above nozzle geometries. Therefore, Addy’s work has been used as a benchmark
in numerous computational investigations of the same problem. Studying a free-jet
computationally has been a challenge for researchers due to the series of sharp shock
discontinuities present in the flow-field. Numerical schemes which are Total Varia-
tion Diminishing [20], which use a flux limiter to bound the values of the gradients

around the shock to realistic values and to avoid spurious oscillations, have been most

commonly used.
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Figure 2.6. Sonic nozzle geometries and the Mach disc onset regime, Addy (1981) [2]

Murphy and Miller (1984) [30] examined the formation of under-expanded jets
from converging and capillary nozzles. Pitot tube measurements at the nozzle exits
revealed difference in the value of the Mach numbers obtained by both the nozzle
geometries. While M = 1 was observed for the converging nozzle, a value of M = 1.45
at the exit. The properties in the downstream region were calculated using the
“Method of characteristics” with the pitot tube measurements at the nozzle exit as
the initial conditions. Measurements of Mach number along the centerline differed
for either nozzle geometry for a distance equal to two times the nozzle diameter.
However, beyond this point the profiles of the jet appeared very identical to each
other.

Matsuo et al (2004) [27] studied the impact of nozzle geometry on the near field
of the supersonic under-expanded jet. The free-jet characterized by the presence of a
Mach disc and barrel shock were simulated by solving the Navier-Stokes [N-S| equa-
tions in axisymmetric coordinate system. A third order Total Variation Diminishing
[TVD] with the MUSCL limiter [46] was implemented for the spatial derivative terms.

For the discretisation of the viscous terms in the N-S equations, a second order cen-
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tral differencing scheme was applied. Computational domains representing nozzle
geometries used by Addy were used in order to study the influence of geometry on
the appearance of the Mach disc. Each computation was performed using air as the
working fluid with a value of PR = 6.2. The results for each nozzle case were mea-
sured in the terms of the ratios LD—’T and DD—”:Ld. The results successfully predicted the
location and diameter of the Mach disc in the flow. However, there was no distinct
presence of a barrel shock close to the exit in the case of the conically converging and
the orifice nozzles. It was considered that the presence of a vena-contracta near the
exit of these nozzles as a factor responsible for the distortion of the jet boundary.

Menon and Skews (2007) [28] modeled under-expanded jets using the Spallart-
Allmaras turbulence model for closure of the Reynolds Averaged Navier-Stokes equa-
tions. Three different nozzle configurations were used for the computations and results
were obtained for values of PR ranging from 2 to 10. The values of DD—’T and LD—";d were
observed to be in direct variation to the value of PR, though the actual values were
slightly over predicted compared to the analytical results by Addy. The authors at-
tributed this deviation from theoretical results to the lack of account of the boundary
layer formation in the nozzle geometry. They even suggested that the effects of tur-
bulence may have a bearing on the stem heights and hence needs to be investigated.
Further the Mach disc was accompanied with a slight curvature that seemed to be
increasing with the PR.

Otobe et al.(2007) [34] conducted a similar study for nozzle geometries of various
configurations. They chose to model their computations using the inviscid Eulerian
compressible flow equations as the governing differential equations assuming that
viscous effects do not have a significant influence on the flow structure. The choice of
nozzle configuration was the same as used by Addy. The equations were solved using a

third-order TVD finite difference scheme by Yee (1989) [50]. Grid sizes were varied to

obtain grid-independent solutions. Air at atmospheric temperature and pressure was
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Figure 2.7. Correlation between PR and Mach disc location and stem height, Otobe
[34]

assumed for inlet conditions while the back pressure was varied to study results for 4
< PR < 12. These results sought successful confirmation with the analytical model
presented by Addy. The stem heights varied with respect to the PR. A variation for
these values for the different nozzle configuration was also obtained. The location of

the Mach disc was determined as a function of the PR alone and is independent of

the nozzle geometry (Figure 2.7).
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CHAPTER 3
PROPOSED METHODOLOGY

3.1 Eulerian phase

The simulation of the under-expanded free jet flow in the separator chamber is
performed using compressible flow solver rhoCentralFoam [18], which is a part of
OpenFOAM (©) [33]. High speed compressible flow is characterized by the presence
of discontinuities such as shocks and contact discontinuities, the treatment of which
is difficult to handle. Schemes such as the piecewise parabolic method (PPM) [9],
essentially non-oscillatory (ENO) schemes [20], weighted ENO (WENO) [21] schemes
have been popular in the numerical calculation of compressible flows. These schemes
basically are approximate Riemann solvers that involve characteristic decomposition
and Jacobian evaluation, which make them difficult to implement and are computa-
tionally expensive.

rhoCentralFoam uses an alternate Riemann-free approach that is independent of
characteristic decomposition and Jacobian evaluation. This approach, named the
“central scheme” described by Nessyahu and Tadmor [32], has been derived from the
Lax-Friedrichs scheme. The resulting numerical method has been proved to obtain

accurate and inexpensive solutions for compressible flow problems [18].

3.1.1 Governing equations
We solve the governing equations of fluid motion for the Eulerian phase. These
equations are discretised and subsequently solved using the Finite-Volume method

which shall be described briefly in section 3.1.2. The equations are expressed as a set
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of partial differential equations (PDEs) which are derived by the application of the
laws of conservation to fluid motion :
Conservation of mass (Continuity equation):
dp

otV lap] =0 (3.1)

Conservation of momentum neglecting gravity and particle drag:

d(pu
%+V-[ﬂ(pﬁ)]+Vp+V-0:0 (3.2)
where ¢ is the viscous stress tensor considered positive in compression.
Conservation of energy:
I(pE)

—o -+ V l(pE) + V- (ap) + V- (0-0) = V- (kVT) (3.3)

where, the primary variable (pF) is the total energy of the system, & is the con-
ductivity and T is the temperature and £ = e+ ‘UTQL where e = ¢, T = (7-1)RT is the
specific internal energy and v = % is the ratio of specific heats at constant pressure
and constant volume.

The value of temperature is calculated as

r-1 (@ _ @) (3.4)

Co P 2

The Equations (3.1 - 3.3) are closed by the ideal gas equation of state :

p=pRT (3.5)
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Figure 3.1. F-V control volume, Greenshields et al (2009) [18]

3.1.2 Finite volume method

In the Finite-Volume method [47] the computational domain is divided into poly-
hedral cells called Control Volumes (CV). Figure 3.1 shows a typical control volume.
Neighboring CVs are connected to each other by a face f represented by the area
vector Sy .The vector Sy points normally outwards from the cell designated as the
“owner cell”. The cell that shares the face f with “owner cell” is named as “neighbor-
ing cell” for the sake of convenience. The cell centers of the owner and neighboring
cells (named P and N respectively) are connected by the vector d. The governing
PDE’s are integrated over the CVs. Gauss’ theorem is implemented to convert these
integrals into surface integrals over the face f.

Discretisation is the next step where the surface integrals are converted into a set
of simple algebraic equations involving values of the flux of the primary variables ;.
The values on the face of the CV are interpolated from values at centers (¢¥p and
1) of the cells connected by that face. The detailed procedure of discretisation and

interpolation has been explained in the following sections.
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3.1.2.1 Discretisation of convective terms
The convective terms in Eqns (3.1 - 3.3 ) are V- [(up)], V - [u(pu)] and V - [u(pE)]

. Fach term is integrated over the control volume and further linearized as follows:

[ vy = [ as- @) =3 o, (3.6)
1% f

S

where ¢;=S;.1y is the volume of fluid passing through the face per unit time.
rhoCentralFoam uses a non-staggered central differencing interpolation scheme by
Kurganov, Noella, Petrova [25] to obtain s by splitting the flux in two directions,
namely incoming and outgoing directions. The quantities shall be represented by the
suffixes, f— and f4 respectively.

The discretisation can be represented thereby as :

D drr = [adpahp + (1 — a)dr_ty] (3.7)
7 7

¢y in either direction is calculated from the respective local speeds of propagation:

Or+ = |S|mazx[(ss + cpy), (Ug- +¢p-), 0] (3.8)

¢p— = [S|max((ipr —cpr), (G- —c-), 0] (3.9)
where c;+ = /yRT are the speeds of sound at the face for the waves in the

outward and inward direction. The weighting function « is calculated as :

_ P+
T o (310)
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3.1.2.2 Discretisation of gradient terms

/dev = /Sdsw = Ef: Spiby (3.11)

After converting the volume integral into a surface integral, the discretisation is

carried out as follows:

> Spby = [aSrdrs + (1 — a)Spey_] (3.12)

The fluxes in the either direction are calculated in the same procedure used for

the convective terms.

3.1.2.3 Discretisation of Laplacian terms

The Laplacian terms are discretised as follows:

[ 70wy = [ das- (v~ Ss; (Vo) (3.13)
1% S f

The diffusion constant 7, is interpolated directly from the cell centers. The eval-
uation of the diffusion flux Sy.(Ve))s is split into orthogonal and non-orthogonal

components.

3.1.2.4 Discretisation of temporal terms
The temporal terms in the Equations (3.1 — 3.3) are discretised using the Euler

explicit scheme:

oY _ (Pt —ym)dv
v ot ot

(3.14)

where 0t is the time step
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3.1.3 Boundary conditions

Numerical simulations of compressible flow problems require a delicate treatment
of the boundary conditions at the inlet and the outlet. As mentioned earlier the
solution of high velocity compressible flow problems has a wave-like nature. Each of
these waves has a local speed of propagation which can be obtained as an eigenvalue
of the Jacobian matrix of the Navier-Stokes equations. Performing a characteristic
analysis of the equations to yield the eigenvalues will help to understand their signif-
icance in specifying the boundary conditions. The detailed procedure for the same
has been presented by Poinsot and Lele [37]. The eigenvalues for a 3-D compressible

flow system obtained as a result of the procedure can be expressed as follows:

Al =u—a,
)\2,)\3,)\3:U
)\3:u—|—a

where \; is the eigen value obtained for the density equation. \g, A3, A4 are the
eigenvalues corresponding to the mometum equatios. Aj is the eigenvalue for the
energy equation. The polarity of the values of \; denotes the direction of flow of the
corresponding waves. The local speed of sound is denoted as ‘a’. If the wave enters
the computational domain at a particular boundary, its “region of dependence” lies
outside the domain, which means that it relies on information that is not present
in the domain. Hence the values of the variable attached to that wave needs to be
specified at that boundary. On the contrary, the waves that exit the computational
domain have a “region of dependence” that lies entirely inside and thereby the value
of the variables at the boundary must not be specified. The following boundary
conditions are encountered during the simulation of an under-expanded supersonic
jet:

_Inlet: Supersonic conditions are present at the inlet. All the eigenvalues of the

system at the inlet have values greater than 0. This means that they enter the domain.
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For such a system value for every variable viz. p,T,U needs to be specified at the
inlet boundary.

Outlet: Subsonic conditions are prevalent at the outlet due to which the eigenvalue,
A =u—a < 0. In order to deal with this incoming wave associated with the pressure
boundary condition, non-reflective boundary conditions shall be used. The values of

U and T, are allowed to float.
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3.2 Discrete particle phase
The fluid-particle interaction is defined in the form of adding a source added to
the Navier Stokes (N-S) equations of momentum conservation.

opr

o +V-[u(pu)]+Vp+V-a+%:fp:O (3.15)

The nature of this fluid-particle coupling can be classified in three categories based
on the concentration of the particles in the gas, in terms of the volume fraction.

1-way coupling: A dilute suspension which has a volume fraction less than 1076

has negligible effect on the momentum of the gas phase i.e. the gas influences the
particles, but the particles have no effect on the gas. The source term in the N-S
equation can thereby be neglected.

2-way coupling : a particle suspension of volume fraction in the range of 107°

to 1073 influences the gas phase. The source term is added in the N-S equation to
account for this 2-way coupling.

4-way coupling: for higher concentration particle-to-particle interaction must also

be taken into account.
A 1-way coupling between both the phases, neglecting the effect of the particle

phase on the gas phase.

3.2.1 Lagrangian equations of motion
The particle motion can be described by the following differential equation in a
Lagrangian frame of reference.

du,
my— = Fa+ F, (3.16)

Where F} is the force of gravity acting on the particle which shall be neglected as
it is extremely small compared to the drag force. The force Fy is the drag force per

unit-mass-of the particle, which can be expressed as:
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1
Fu=5CaAp,(U = Uy) [U = U, (3.17)

where CYy is the coefficient of drag, A is the projected frontal area of the particle,
pg is the gas density, U is the velocity of the gas, U, is the velocity of the particle and
m,, is the mass of the particle.

For a spherical particle of diameter dp,

2
A= ”ip (3.18)
d 3
m, = ”p% P (3.19)
Hence Eq. 3.17 for a sphere reduces to:
dUp 3 Cdpg
—=-———U-U,)|U -1, 3.20
dt 4 ppdp ( P) | IJ| ( )

Stokes (1851) [44] expressed the coefficient of drag on a spherical particle sub-

merged in a creeping flow as:

24 24

CS:—:—
PSS Ry ppdy U — U]

(3.21)

After substituting p, from Equation 3.19 , we derive the equation of the acceler-

ation acting on the particle as :

dUp Cd 18,u Cd (U — Up)

= U-U,) =4~ _"» 3.22
dt Chs ppdp2 ( p) Chs ppdp® ( )
18u

Cy is the actual coefficient of drag acting on the particles. Necessary corrections
must be applied to Equation 3.22 in order to account for the influence of factors

such as particle geometry and gas properties. Some of the available drag laws have
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been reviewed in the following section. This expression for drag force also yields an

dep2
18y

important parameter 7, = which is the result of the ratio of the particle inertia
to the drag called as the particle dynamics time scale, 7, . This time scale describes
the aerodynamic response time of the particle in the gas flow. The other relevant

parameter is the gas dynamics time scale 7 that represents the time for the gas to

travel a characteristic length L with velocity U.

L
o (3.23)

T =
The ratio of the two time scales yields the non-dimensional parameter called as
the Stokes number.
2
T, ppdpy U

Sy = . = —18L,u (3.24)

For S; > 1, the particles separate from the air flow after the impact on the louver
and escape out of the chamber through the collected outlet placed above the louver.
For S; < 1 the particles follow the air streamline closely as the air flows around the

blades into the classified outlet.

3.2.2 Review of drag correlation
3.2.2.1 Drag correlation for smooth spherical particles
Morsi and Alexander [29] proposed the following relation for the drag coefficient

of smooth spherical particles:

[45) as

+
R(id Red 2

Od = a1 + (325)

Where a4, as, az are constants specified over several discrete ranges of R.4.
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3.2.2.2 Drag correlation for non-spherical particles
Haider and Levenspeil [19] expressed a drag law in the following expression
24

Cy= E(l + b R) +

where b; = exp(2.3288 — 6.4581¢% + 2.4886¢°)

bsR.
b4 + Re

(3.26)

by = exp(0.0964 + 0.5565¢%)

by = exp(4.094 — 13.8944¢ + 18.4222¢* — 10.2599¢°)

by = exp(1.4681 — 12.2584¢ — 20.7322¢* + 15.8855¢3)

Where ¢= shape factor, is the measure of the sphericity of the particles. A value
of ¢ = 1 represents a perfectly spherical particle. The shape factor of the particles has
been observed to have an effect on the collection efficiency. Lower shape factor tends
to increase the drag acting on particles. This has a negative effect on the collection
efficiency. However, since inertia dominates the flow of larger particles, the effect of

¢ on the efficiency is less pronounced on larger particles.

3.2.2.3 Drag correlation for sub-micron particles
For sub-micron spherical particles the C, is obtained by obtained by applying the
Cunningham’s correction factor [11] C,, represented in Equation 2.3. The effective

expression of Cy is therefore given as follows:

_ A 24
Recc Re [1 + 2X(T,p) (1257_|_ 0‘46—1.1(2)\7571))))}

dy

Cq (3.27)

3.2.2.4 Drag correlation for supersonic rarefied flow

Henderson (1976) [22] presented a set of empirical relations to model drag forces
in various flow regimes, continuum, rarefied and transition. Three equations, each
representing a particular range of Mach number were derived. The first expression

for subsonic flow is as follows:
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-1
Cy=24 {Re +5 {[4.33 + 1.567 exp (—0.247%)” A+B (3.28)

s [4.5+0.38(0. 48V
L { 5+ 0.38(0.03R, + 0.48 Re)] 3.29)
1+ 0.03R, + 0.48V/R,
B= [1 - e(%ﬁ] 0.6S (3.30)

For supersonic flow with Mach number exceeding 1.75 the following expression

was considered valid:

09+ G+ 186(5)%° [24 & + 19 — 5]
a 1+ 1.86(4L)0

(3.31)

Where, S = M \/@ is the molecular speed ratio and the ratio % ~ K,. M is
the Mach number and + is the ratio of the specific heats.

The values of M and R, are both based on the relative velocity between particle
and fluid. For Mach number between 1 and 1.75, linear interpolation is used. The
author validated the values of drag coefficient calculated by the above experiments
with alternate expressions and experimental data. In continuum, rarefied and transi-
tion regimes, Henderson’s expressions agreed more closely with the experimental data

than other expressions.

3.2.3 Selection of drag correlation

The Stokes-Cunningham drag correlation with the Cunningham correction factor
C. has been used widely used for modeling the flow of sub-micron particles which
falls in the free molecular regime. Henderson’s equations are more comprehensive
than the Cunningham correction factor as they include compressibility due to high
Mach number flow. However, for free molecular flow, rarefaction effects dominate

effects due to compressibility. This was clearly observed by Tedeschi, Gouin, Elena
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(1999) [45] in their investigation of particle motion in high speed flows. Experimental
values of particle velocity across a shock were compared with values calculated by the-
oretical expressions provided by various drag laws. The predictions by Cunningham
correction factor showed satisfactory confirmation with experimental data. Moreover

its expression is much simpler and hence is selected for our purpose.
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CHAPTER 4

IMPLEMENTATION

The computational method for the solution of high speed compressible flow prob-
lems, described in the previous chapter has been implemented in the OpenFOAM
solver rhoCentralFoam. OpenFOAM is a collection of C++ libraries. It uses inheri-
tance and template features of Object Oriented Programming to design the structure
of the solvers in a manner that resembles that of the actual system equations and
is therefore easy to interpret. For example, the solution of the continuity equation

(Equation 3.1) can be represented by the following syntax:

solve(
fvm::ddt(rho) + fvc::div(phi) ==

);

This operation casts the PDE into a matrix system of the form [A][x] = [b],
where [A] is composed of the algebraic coefficients derived from the discretisation
of the convective, gradient and Laplacian terms. [z] is the matrix of the dependent
variables and [b] is the matrix resulting from the source terms.

In order to calculate the discrete phase particle trajectories, an OpenFOAM La-
grangian particle class has been coupled with rhoCentralFoam. A new subroutine for
the calculation of the drag force on the particles by the Cunningham correction factor
has been written. We thus have an integrated compressible flow-discrete phase CFD
solver that has been used to perform CFD simulations of the validation cases and the

final-results:
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4.1 Iterative algorithm for rhoCentralFoam

The viscous momentum and energy equations are solved using the time-splitting
approach. In this approach, the inviscid equations are solved explicitly, by the ‘fve::’
operator, to obtain a predicted value of the variable. Later, the diffusion terms are
then introduced as implicit corrections to the original inviscid equations, represented
by the ‘fvm::” operator .

The solution starts with the calculation of psy, Tr1 and uysy at the face of the cell,
split into outgoing and incoming directions. The face values are interpolated from the
values at the cell centers and substituted in the calculation of the convective fluxes.
This method has been described in Equations (3.7 to 3.11).

Thereafter, the continuity equation (Equation 3.1) is solved to obtain the density,
p. The predicted value of the velocity, (u) is calculated explicitly from the inviscid

momentum equation:

W)E)—t(pw+v. [u(pu)] + Vp = 0 (4.1)
-~ (pu)
= (4.2)

The value of 4 is then used to calculate the corrected value of velocity at the next

time step (denoted as n+1) implictly, from the viscous momentum Equation 3.2.

(pu)" " — (pu)
ot

— V- (uVu) =0 (4.3)

The energy equation is solved in the similar manner. A predictor value of the
energy flux (pE) is first calculated from the inviscid energy equation.
9(pE)

5tV uE+p)+V-(0-u)=0 (4.4)
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The temperature, T' is obtained using Equation 3.4, which takes p, u and E as
input. The estimated value of T" is then used in the corrected energy equation:
d(peuT)

=V (kVT) =0 (4.5)

The pressure is then updated using the ideal gas equation of state ( Equation 3.5).

Sutherland’s law of viscosity is used to model the viscosity u:

T1.5

S 1.6
= [ T T, (4.6)

T = 110.4 K is the reference temperature. p,.; = 1.716 X 107° % is the reference

viscosity.
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4.2 Lagrangian particle class

The Lagrangian particle tracking is performed using an intermediate particle class
that models effects due to kinematic, thermal and reacting forces acting on a particle.
Besides, it offers flexible models for drag forces, particle injection and wall interaction

models.

4.2.1 Lagrangian parcels and clouds

A physical particle is represented in the computational domain as a parcel. A
computational parcel represents a number of physical particles. It is assumed to have
the same velocity and material properties as the physical particle.

A cloud is a collection of Lagrangian parcels. The entire mass of particles entering
the computational domain is initialized as a cloud. The Lagrangian cloud named as
the kinematicCloudl is directly coupled with the Eulerian gas phase through the mo-
mentum equation (Equation 3.15), representing the source due to particle momentum

and the gravity acting on the particles:

solve {
(
fvm: :ddt(rho, U) - fvc::ddt(rho,U)
- fvm::laplacian(mu, U)
- fvc::div(tauMC)
== kinematicCloudl.SU1()
+ rho.dimensionedInternalField()*g
);
rhoU = rhox*U;

}

However, it must be noted that our research assumes a one way coupling between

the gas.and particle. phase and that the effects of gravity are totally neglected. Instead
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only the values of the quantities of the gas phase are used to calculate the particle
trajectories.

The kinematicCloud is constructed with inputs such as references to gas properties
and the material properties of the particles. The quantities of the gas phase are stored
at the cell centres of the Finite Volume mesh. The values of the quantities at the
position of the Lagrangian particle is interpolated from the nearest cell centres, using

the ‘vpi’ interpolator function:

basicKinematicCloud kinematicCloudl

(
"kinematicCloudl",
vpi, %
rho, p, T, U,mu(), % references to gas phase.
g % acceration due to gravity (optional)
)

The motion of the particles suspended in the high speed compressible gas flow
is calculated by set of Ordinary Differential Equations [ODEs]. The position of the

center of a particle, z, is calculated by the following equation:

dz,

L =1, (4.7)

where U, is the velocity of the particles calculated by :

U,
my— L = S b (4.8)

where m,, is the mass of the particle. Here, > f, is the sum of forces acting on
the particle, also representing the source term in Equation 3.15. The most dominant

forces acting on a particle travelling in a gas are usually the drag forces Fj, lift forces
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F; and the forces due to Brownian motion, Fj. The flow of sub-micron particles is
however dominated by the drag forces. Lift forces and Brownian forces have been

found to have negligible influence, and thereby are excluded from the calculations.

(Up — U)

Tp

Fd = —my (49)

d . . . .
Prir — is the particle relaxation time scale.

her —4_ P
WRELE Tp = 3 5,CalU—T,|

Cy is the drag coefficient modeled using the Cunningham correction factor.

4.2.2 Particle-wall Interaction

The intermediate Lagrangian class offered by OpenFOAM has the standard wall
interaction model, based on the coefficients of restitution, (e,) and (e;) for the normal
and the tangential components respectively, of the velocity of the particle impacting

on a wall. The components of the velocity are updated as follows:

Un2 = en(]n,l (410)

)

Uio = eUpy (4.11)

A value of 1.0 for either e, and e, signifies total conservation of velocity. A value
of 0.0 signifies total loss of velocity after impact with the wall. Hence the particles
stick to the wall. These latter conditions represent the “Trap” boundary conditions

for the particle phase and shall be used in the validation test case in Chapter 5.
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CHAPTER 5
VALIDATION

5.1 Compressible flow

The introduction of supersonic flow from a sonic nozzle into a quiescent medium
maintained at an ambient pressure much less than the pressure at the outlet of the jet,
results in the formation of a free- under-expanded jet at the outlet of the nozzle. The
details of this phenomenon have been explained in Chapter 2. Numerical simulation
of this phenomenon for high inlet to ambient pressure ratio (P.R.), is a challenge due
to the presence of high gradients in the flow field. Hence, it is necessary to validate
the ability of the compressible flow solver, to accurately predict such flows.

The experimental study on under-expanded jets by Addy [2] provides a very re-
liable reference for measuring CFD predictions of the same. The objectives of the

validation can therefore be explained as:

1. To verify that the solver can successfully resolve shock discontinuities across the

flow field.

2. To verify the accuracy of the solution by measuring placement and dimensions

of the Mach disc against analytical Egs. (2.11) and (2.12).
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5.1.1 Validation case

The validation has been performed using a rectangular mesh representing the
expansion chamber outside the nozzle exit. The geometry is 50 mm long and 15 mm
wide with a nozzle outlet radius 2.5 mm. The model has been meshed using 3000

cells as shown in Fig 5.1.

Wall

Qutlet

Inlet HHEHH A A RN RRARRENRERERREREEREEEEEREREEEmEEEERENE

Axis of Symmetry

Figure 5.1. 2-D axisymmetric mesh of expansion chamber used in the validation
case

Inlet boundary conditions represent sonic conditions at the nozzle exit having a
total pressure of 101325 Pa, total temperature of 298 K and velocity equivalent to
Mach number 1. Non-reflective outlet boundary conditions are used at the outlet,
with values varied for every case (Table 5.1.1), in order to check the results for a

range of pressure ratios.

5.1.2 Results
Steady state solution for the case number 3 has been plotted in 5.2(b). Fig 5.2(a)
represents results for identical operating conditions obtained by Sommerfeld [43] us-

ing shadowgraph technique. The numerical results show very good agreement with
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Table 5.1. Boundary conditions for validation cases

Case Poutlet

Pressure ratio

1

2
3
4

12666
6755
3753
2533

8

15
27
40

the experimental results. The location and width of the Mach disc, both non-

dimensionalized with respect to d,, has been recorded for all cases and compared

with Addy’s empirical equation. Satisfactory agreement can again be observed be-

tween either results can be observed in Figures 5.3 and 5.4.
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Figure 5.2. (a) Shadowgraph image [43] and (b) Steady state numerical results of
under-expanded jet for %:27. Top half represents pressure in Pa (top scale), bottom
half represents velocity in m/s (bottom scale).
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5.2 Validation of the Cunningham correction factor (C. )
5.2.1 Introduction
Fernandez de la Mora (1990) [12] designed a hypersonic impact separator for
nano sized aerosol particles using a flat plate for the collection of the particles. The
impactor plate was placed normal to the flow exiting a purely converging nozzle.
In the original experiment, the distance of the plate from the nozzle exit (L,) was
varied with respect to the nozzle exit diameter (d,) in order to check the influence
Lp

of the ratio, 7 on the collection efficiency. The results obtained for

Lp

== 3 are used
mn

for the validation of the OpenFOAM Lagrangian class implementing the C. for sub-
micron sized particles in rarefied flow. The original article makes no mention of the
geometry of the nozzle. The nozzle used for the simulations in this case has a purely
converging section with an angle of 45°. It has an outlet radius of 0.135 mm. The

2-D axisymmetrical computational mesh for the impactor is given in Figure 5.5.

Figure 5.5. Mesh used for validation case for the Cunningham correction factor
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5.2.2 Numerical results
The inlet pressure was fixed at 1 atm, with a temperature of 298 K throughout
the domain. The outlet pressure was fixed at 253 Pa, consistent with experimental

conditions. The single phase gas flow was calculated using the solver rhoCentralFoam.

U Magnitude

2[1]' |} IAIEII]I Ll an
| T
0 750

Figure 5.6. Velocity contours and vectors of the hypersonic impact separator

The velocity contours and vectors of the steady state numerical solution are plotted
in Figure 5.6. The flow expands rapidly as soon as it exits the nozzle. The core of
the expanded jet has very high velocity. As the jet impacts the plate, a strong shock
develops in front of it. This is the bow shock, which is a form of the Mach Disc,
the normal shock that accompanies an under-expanded jet facing no obstacle in its
path. The impactor plate deflects the jet outwards in a radial direction. The velocity

decreases rapidly across the bow shock. Variations of the Mach number of the flow
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field across the centerline are plotted in Figure 5.7. The jet achieves a highest Mach
number above 4. As it crosses the bow shock, the value of M, falls rapidly.

If the distance between the plate and the nozzle exit (L,) is infinite compared
to the nozzle diameter d,,, the expansion of the air from the nozzle would take the
form of the typical underexpanded jet discussed in previous sections. The location of
the bow shock with respect to the nozzle exit diameter, L,,q would be determined by
Addy’s expressions (Equations 2.11 and 2.12). In this case however, the location of
the bow shock is the function of the nozzle geometry and the value of the ratio %

Fernandez de la Mora established the location of the bow shock as a function of the

variable 7 given as :

0= () VPR (5.1)

The distance between the bow shock and the plate surface, at a point of the

centerline axis is given as :

1) 0.67
=1 == 5.2
L, i ( )

However, this equation only holds true for values of % > 14 , as for lower values

has a negative value. For %, the value of n = 0.15. Therefore, a corrected corelation

for L%, proposed by Abouali and Ahmedi [51] is used for the theoretical prediction of

the location of the bow shock :

(

—0.87431% + 1.6322n% — 0.4108y + 0.1445, 0.05 < 5 < 0.85
5
7= 4 0.01175° — 0.13467 + 0.5431n + 0.0703,  0.85 <7 <5, (5.3)
D
1 — %67 n > 5.

\

Figure 5.6 also shows the bow shock clearly formed before the impactor plate.

Eor_the given operating conditions, the distance of the bow shock is measured as
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d/L, = 0.125. This value of §/L, closely agrees with the value of 0.1206 predicted by
Equation 5.3.

The bow shock has significant influence on the collection performance of the im-
pactor. The high gradient of pressure across the shock, and the rapid change in
direction of the flow act as an obstacle to the flow of particles exiting from the nozzle.

4.5

s 4

35 4

Figure 5.7. Variation of Mach number along the centerline

The particles were introduced into the computational domain through the inlet.
The initialization of the particles across the inlet of the axisymmetric mesh should
adequately represent uniform initialization across the entire cross-sectional area of the
actual nozzle. The particles have been initialized in such a way, that equal number
of particles lie in each circular infinitesimal element of the total cross sectional area.
The spacing between every consecutive particle represents this circular element. The

algorithm for calculating the radial position of every consecutive particle (rps), is as

given below:
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R = Inlet radius of nozzle.
A = Cross sectional area.
AA = Area of elemental area representing each particle.
N, = number of particles.
Width of innermost ring r; = \/]1\%,:127
Since AA should remain constant between every particle,
AA =7(r,?> —r?)
To = /T2 + %
Thus the position of every particle is calculated by the following iterative proce-
dure:
r; = 0;
fori=1— N, do
Tpos = %(Tz + 75)
ri =T,
end for
where r; and 7, are the inner and outer radius of every consecutive element and 7,0,

is the radial position of each particle at the center of the element.
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The “Trap” boundary conditions were used to simulate the collection of the par-
ticles on the impactor plate after the impact. Collection efficiency of the device is
measured by calculating the ratio of the particles collected on the impactor surface
over the total number of particles entering the domain. Figure 5.8 shows typical
particle tracks obtained by the Lagrangian solver. The bow shock acts as a sudden
obstacle in the path of the flow.

The performace of the impactor plate is measured by the collection efficiency for
a given range of particle diameters d,. The probability of a particular d, of crossing
the shock wave and impacting on the plate surface is directly proportial to its Stokes
number .S;.

Collection efficiency results obtained by the present CFD for particle size (1 to
100)nm are being compared to results obtained by Fernandez de la Mora in Figure
5.9. CFD results by Abouali et al (2005) [1] have also been used for comparison.

The CFD results predict a 100% collection efficiency for values of d, > 10nm. A
cut diameter i.e. the value of d, which has a collection efficiency of 50%, of 3 nm has
been obtained. These results predicted by the numerical solver agree well with the
experimental results. This demonstrates the ability of the Lagrangian particle class to
accurately model the drag forces acting on sub-micron particles in rarefied conditions.
Moreover, the validation results demonstrate the efficiency of rhoCentralFoam coupled

with the Stokes Cunningham correction factor.
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Figure 5.8. Particle tracks for d, = 10 nm.
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Figure 5.9. Comparison of collection efficiency
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CHAPTER 6
RESULTS

6.1 Flow field of the under-expanded jet

In this chapter, computational results of particle focusing obtained by two types
of nozzles have been discussed. A straight nozzle and a sharply converging nozzle
have been used for this purpose. The nozzles have an outlet diameter d,, = bmm.
The straight nozzle has a length of approximately 12mm. The converging nozzle has
an inlet diameter of 8mm. It has a sharply converging section with a depth of 2mm.
The computational domain of the geometry, is decomposed into an axi-symmetric,
Finite-Volume (F-V) mesh of approximately 3000 cells. The mesh has 5 cells across
the radius of the mesh. The supersonic under-expanded jet has been simulated using
rhoCentralFoam. Particle trajectories in the resulting flow have been studied by
the Lagrangian particle class, implementing the Cunningham correction factor while
calculating the drag forces

Inlet boundary conditions represent reservoir conditions having total pressure of
101325Pa. Non-reflective boundary conditions are used at the outlet with a fixed
value of 101Pa. The code, which is transient, is run until the solution reaches a

steady state.

6.1.1 Straight nozzle
The steady state results for the straight nozzle can be seen in Fig 6.1. The air
experiences a pressure drop as it enters the nozzle channel. Due to the sudden drop in

the flow area, a vena-contracta region is formed at the inlet. Here, the air is deflected

52

www.manaraa.com



towards the centerline of the nozzle (Figure 6.3). As it exits the nozzle, it rapidly

expands to match the back pressure.
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Figure 6.1. Pressure and velocity contours for the straight nozzle.
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Figure 6.2. Mach number variations across the centerline, along the length of the
straight duct
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Figure 6.3. Vena-contracta experienced at nozzle inlet.

The rapid expansion results in the formation of an under-expanded jet. The core
of this jet is characterized by an extremely low pressure region bounded by strong
shocks. A normal shock, the Mach disc is seen downstream. The region immediately
downstream of the Mach disc is a stagnation region with an extremely low velocity.
Figure 6.2 shows the variations of the Mach number, calculated along the centerline
of the flow field. A sharp acceleration is seen at the inlet of the nozzle reaching
M = 1. Further downstream, the Mach number exceeds unity, reaching a value of
1.08 throughout the length. According to the 1 — D Fanno flow analysis [42], the
flow inside the straight nozzle must indeed not exceed M = 1. The Mach number
variation in the nozzle is found to be independent of the density of the grid prompting
the need to search studies that recorded similar observations.

Murphy and Miller (1984) [30] recorded measurements of Mach number of the
flow, in the downstream region of a straight and a converging nozzle, starting from
a point right outside the nozzle exit. They observed that while the flow through
converging nozzle reached M = 1 at a distance of 0.25 x D,, from the exit, flow
through a capillary (straight) nozzle obtained M = 1.4 at the same length. The
measured the ‘sonic surface’ to be occuring atleast one diameter upstream of nozzle

vere recorded by pitot tube. However, the authours could not
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Figure 6.4. Computational mesh representing nozzle-duct assembly used by [24,26]

explain the reason for this anamoly in their paper. Beyond a short distance along the
axis, the profile of the jet did not seem to be dependent on the nozzle geometry.
Kubo et al. (2010) [24] observed the flow inside the duct section reaching M > 1,
near the exit, in their experimental investigation of choked flow in straight ducts.
Lijo et al. (2009) [26] performed detailed numerical investigations of choked flow
inside straight ducts and compare them with Kubo’s observations. The length of the
duct was varied in order to observe the influence of the D% ratio on the flow. Lijo
et al. confirmed the value of M to be greater than 1, near the exit. Both the works
attributed this deviation to the viscous effects near the exit region, which reduced
the effective cross-sectional area for the flow. Moreover, the thinning of the boundary
layer near the exit provided a diverging section for the flow, causing the value of
M to rise above 1. In both the studies, the air enters the straight duct through a
gradually converging nozzle. Figure 6.4 shows the computational mesh of the nozzle-

duct section. The inlet nozzle has a circular profile, with a radius R =2 * D,,.
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Figure 6.5. Steady state Mach number contours (a) < = 10 (b) 4 = 20

Results by Lijo et al. and Kubo et al. are reproduced by rhoCentralFoam in

Figure 6.5 for the purpose of validation. The operating conditions are the same

as used in both the studies. Pressure ratio, % = 0.435 has been applied across the

domain. Simulations have been performed for Din ratios of 10 and 20. Figure 6.6 shows
the steady state results of Mach number contours obtained by rhoCentralFoam, for
Din = 10, 20.

The flow starts with a subsonic velocity, with M rising to a value slightly lower
than 1 at the inlet of the straight duct. As the flow approaches the exit, M = 1 is
reached at a point, approximately (80 — 90%) of the total length of the ducts. This

is consistent with the results of Kubo et al. [24] and Lijo et al. [26].
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Figure 6.6. Mach number variations in straight duct for Din = 10, 20.

However, the trend of the Mach number varies a lot for the flow entering the
duct through a sharply converging nozzle (this is the nozzle geometry used in the
thesis). The pressure and velocity contours and the Mach number variation across the
centerline along the length of the straight duct, obtained from the steady state results
are shown in Figures 6.1 and 6.2 respectively. The straight duct in this simulation
has a Din ~ 4. The vena-contracta at the duct inlet, due to the sudden contraction
in the cross sectional area, causes the M to exceed 1 at the inlet of the duct. The
centerline Mach number remains above 1 throughout the length of the duct. As
the flow nears the exit, M rises to reach a high value downstream. Similar trends

have been observed for a £ = 20, with operating conditions matching experimental

D,
conditions (% = 0.435).

In the results seen in Figure 6.5(a) and 6.5(b), the flow chokes only at a point
close to the exit of the duct, where it reaches M = 1. At the inlet of the duct, the

flow does not accelerate to reach M = 1, even though for the case of Din = 10 it

reaches a value very close to unity, i.e. M = 0.99. Hence, no choking is observed at
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this point. However, in Figure 6.1, the flow already attains choking at the point of
the vena-contracta.

The deviation of the compressible flow in the straight duct from the Fanno flow
theory may therefore be explained by the geometric factors rather than numerical
error. The velocity profiles of the flow in the duct and near the exit are found to be
sensitive to the inlet profiles of the nozzles and the length of the duct. As the flow
enters the straight nozzle in Figure 6.1, it experiences a sharp acceleration due to
the sudden contraction in cross-sectional area, resulting in it reaching M > 1. The
vena contracta at the inlet seems to be playing a role similar to the one played by
the boundary layer thinning at the exit, by offering a diverging passage for the flow,

causing M to exceed unity.
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6.1.2 Converging nozzle

The steady state pressure and velocity contours of the under-expanded jet ob-
tained by a sharply converging nozzle can be seen in Figure 6.7. The change in values
of the properties in the converging section is a function of the change in cross-sectional
area. This relation can be expressed in Equations (2.4 - 2.7). Beyond the exit, the
gas expands rapidly and the properties are identical to the ones observed for the
straight nozzles. However, differences can be observed in the conditions upstream of
the nozzle outlet. Figure 6.8 shows the Mach number variation across the centerline,
calcutated for the converging nozzle. The flow experiences an acceleration as it en-
ters the converging section. The velocity increases gradually reaching M = 1 at the

minimum cross section which is also the exit.
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Figure 6.7. Pressure and velocity contours for the converging nozzle.
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6.2 Particle phase

In order to study the particle trajectories for particle diameters of various sizes
in the micron-submicron range, particle streams were initialized in the steady state
solution of the single phase under-expanded jet. The particles were initialized uni-
formly across the inlet of the domain. A uniform value of particle diameter d, has
been used for each simulation. The range of d, varies from 0.1-10 pm. The particle
drag force was calculated using the Stokes-Cunningham correction factor to account
for effects due to rarefaction. The width of the particle beams is been measured for
d, ranging from 0.1 um to 10 pwm. The extent of spread for each value of d, has
been measured in terms of the radial distance of the particles from the centerline,
using a probability density function (PDF). A PDF is a function that describes the
probability of an event to occur at a given point. In this case, the Weibull PDF [48]
shall be used to predict the probability of a particle of a given diameter to be spread
within a particular distance from the centerline. The Weibull probability distribution

function is given by the following expression:

f(SC,C, k) = (61)

0 z <0

where k is the shape parameter and c is the scale parameter of the function. Both

k= (%) o (6.2)

0.433\
c=u (0.568 + T) (6.3)

are defined as follows:

where o is the standard deviation of the range of data and p is it’s mean.
The accuracy of the PDF can be verified by comparing it with a histogram of
the same data. The histogram measures the frequency of occurance of a particular

eventeln this.case;,the histogram would measure the frequency of radial position
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Figure 6.9. Histogram

of the particle to fall in a range. The events, i.e. the range of the radial distance
from the centerline is divided into number of equally sized bins. Figure 6.9 shows a

histogram plotted for 100, 000 particles along with a Weibull PDF for the data.
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6.2.1 Particle focusing by a straight nozzle

The particle trajectories for values of d, = 0.1 pm, 1 pm and 5 pum calculated
by the Cunningham correction factor, C. can be seen in Fig 6.10. The width of the
particle beams can be clearly seen to varying for each value of d,. This variation for
the entire range of d, used is being plotted using a Weibull PDF in Fig 6.11.

As the air from the reservoir conditions enters the nozzle, it forms a vena-contracta
region at the inlet. The flow experiences a sharp acceleration due to the sudden change
in area. The response of the particles in the flow to this acceleration varies for every
value of d,,. The smallest particles that are suspended in the air have a d, = 0.1 pm.
They remain closely coupled with the gas streamlines as the flow enters the nozzle.
After passing through the vena-contracta region, they continue to follow pathlines
parallel to the axis. As the flow expands rapidly to the extremely low back pressure
Py, the particles again closely follow the streamlines and form wide beams in the
expansion chamber. As the value of d, approaches 1 pm, the particles are focused
very close to the axis. For d, = 1 pum, the particle beam remains tighly focused close
to the centerline. As d, rises above 1 pm, the particles tend to cross the centerline
at a point very close to the nozzle exit. This results in increasing width of the beams
downstream. This behavior is because of the particles having S; > 1. Such behavior
for particles having a higher S; has been observed by Fernandez de la Mora et al [15]
in their experimental investigation of focusing aerosol beams in a thin plate impact
separator. Due to the extremely narrow distribution for d, = 1um, the PDF figure
for their positions is plotted separately in Figure 6.11(a). The PDFs for the other
sizes of d,, are plotted in Figure 6.11(b).

The focusing performance of a particular nozzle geometry can be characterized by
the value of S; for optimally focused particle diameter, d,. The approximate values of

S; (Equation 2.2) based obtained assuming sonic gas velocity at the inlet are provided

in Table 6.2.1.
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Table 6.1. S; at nozzle inlet

dp,(pm) Stokes Number,
Sy

0.1 0.0209

0.2 0.0487

0.4 0.1312

0.7 0.3287

1 0.6156

2 2.2110

5 12.8805

The particle pathlines in Figure 6.10 also represent the translational velocity of the
particles U,, as a function of their position. Even though the particles are initialized
with an initial velocity U; = 0, the magnitude of their velocity in the nozzle and the
under-expanded jet varies for every value of particle diameter. For d, = 0.1m, the
particle velocity remains closely coupled to that of the gas phase. As they enter the
nozzle, they experience a sharp acceleration to a value of U, ~ 300m/s. As the jet
exits from the nozzle, the particles exprerience further acceleration to a maximum
value of U, ~ 550m/s. This velocity is reached at a distance approximately equal to
the diameter of the nozzle. The particles lose some velocity as the cross the Mach
disc.

Particles with d, = 1pum experience the similar trend of acceleration in the nozzle
and in the expansion chamber. However, the magnitude of U, reached is lower than
that attained for d,, = 0.1um throughout the flow. A maximum value of U, ~ 350m/s
is reached outside the exit of the nozzle. The presence of the Mach disc does not seem

to have any influence on the velocity of the particles.
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For d, = 5pum, the maximum velocity drops further. The acceleration experienced
by these particles at the nozzle inlet is lower than that observed for the smaller

diameters. Even as they leave the nozzle, the maximum U, attained remains on the

order of 150m/s.
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Figure 6.10. Pathlines for (a) d,=0.1 pum, (b) d,=1 pm and (c) d,=5 pm for the
straight nozzle. The legend represents velocity of the particle trajectories.
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Figure 6.11. Weibull PDF for particle focusing by the straight nozzle
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6.2.2 Particle focusing by a convergent nozzle

Fig.6.12 shows the particle pathlines obtained by a convergent nozzle. The focus-
ing performance of the convergent nozzle is less efficient than the one obtained by the
straight nozzle for the identical range of d,. The acceleration experienced by the gas
at it enters the convergent section of the nozzle is less rapid compared to the straight
nozzle. Therefore the tendency of the particles to separate from the gas streamlines is
lesser. The distribution of the particle beam around the centerline has been measured
using a Weibull PDF and plotted in (Figure 6.14).

Smaller particles that remain closely coupled to the gas streamlines due to their
low inertia, closely follow the nozzle geometry. However for d, ~ 1um, the particles
impact on the converging section. This collision results in the random crossing of the
centerline by these particles, preventing the formation of continous particle beams
in the downstream region (Figure 6.13). Particles that cross the centerline at wide
angles approach the walls of the expansion chamber.

The particle velocity U, can also be observed from the pathlines in Figure 6.12. A
similar trend of U, varying with the particle diameter can be seen. The maximum ve-
locity attained by the respective particles in the expansion chamber is approximately
equal to that attained by the straight nozzle. However, the acceleration experienced

by the particles inside the converging section is not the same as for the straight nozzle.
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Figure 6.13. Enlarged view of particles having dp = 5um crossing the centerline
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Figure 6.14. Weibull PDF for particle focusing by a convergent nozzle
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6.3 Conclusion

The particle trajectories calculated using CFD demonstrate that the straight noz-
zle geometry is more efficient towards focusing particles in an under-expanded free
jet. The focusing is obtained for a very narrow range of particle diameters, which
is of the order of 1 um for the straight nozzle applied here. This performance can
be characterized by an optimum Stokes number in the order of 0.6. Experimental
results by Fernandez de la Mora et al [15] observed optimum focusing Stokes number
in the similar range. The width of this particle beam is less than 0.1% of the nozzle
diameter. Similar results were obtained by Fernandez de la Mora [15]. Dahneke and
Chang [8] observed best focusing for particles with an optimum value of an inertia
parameter ‘3’ which is closely related to the Stokes number.

The focusing performance of the sharply converging nozzle is much less efficient
than the one obtained for the straight nozzle. Even though the expansion of the gas
from the reservoir pressure to the rarefied background pressure is largely independent
of the nozzle geometry, the optimum separation of particles seems to be dependent to
a great extent on the nozzle inlet conditions. By providing a high acceleration to the
flow at its inlet due to the sudden change in cross-sectional area, the straight nozzle
is better suited for this application than the converging nozzle. Moreover, straight
nozzles are easier to design and fabricate.

The particles that are tightly focused along the centerline can be separated from
the rest of the flow by using apparatus like a skimmer or a probe placed coaxially.
Most researchers note that the ideal position for such a skimmer would be at a distance
upstream of the Mach disc [39,40]. Moreover, additional focusing has been observed
to have been brought about by the skimmers due to the inertial effects experienced

at their inlets.
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We thereby conclude that aerodynamic separation of particles offers a very ef-

fective and simple way to separate and collect particles belonging to the sub-micron

range.
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